Identification of a novel V1-type AVP receptor based on the molecular recognition theory.
نویسندگان
چکیده
BACKGROUND The molecular recognition theory predicts that binding domains of peptide hormones and their corresponding receptor binding domains evolved from complementary strands of genomic DNA, and that a process of selective evolutionary mutational events within these primordial domains gave rise to the high affinity and high specificity of peptide hormone-receptor interactions observed today in different peptide hormone-receptor systems. Moreover, this theory has been broadened as a general hypothesis that could explain the evolution of intermolecular protein-protein and intramolecular peptide interactions. MATERIALS AND METHODS Applying a molecular cloning strategy based on the molecular recognition theory, we screened a rat kidney cDNA library with a vasopressin (AVP) antisense oligonucleotide probe, expecting to isolate potential AVP receptors. RESULTS We isolated a rat kidney cDNA encoding a functional V1-type vasopressin receptor. Structural analysis identified a 135 amino acid-long polypeptide with a single transmembrane domain, quite distinct from the rhodopsin-based G protein-coupled receptor superfamily. Functional analysis of the expressed V1-type receptor in Cos-1 cells revealed AVP-specific binding, AVP-specific coupling to Ca2+ mobilizing transduction system, and characteristic V1-type antagonist inhibition. CONCLUSIONS This is the second AVP receptor cDNA isolated using AVP antipeptide-based oligonucleotide screening, thus providing compelling evidence in support of the molecular recognition theory as the basis of the evolution of this peptide hormone-receptor system, as well as adds molecular complexity and diversity to AVP receptor systems.
منابع مشابه
Design of Novel Drugs (P3TZ, H2P3TZ, M2P3TZ, H4P3TZ and M4P3TZ) Based on Zonisamide for Autism Treatment by Binding to Potassium Voltage-gated Channel Subfamily D Member 2 (Kv4.2)
The present research article relates to the discovery of the novel drugs based on Zonisamide to treatment of autism disease. In first step, the electronic properties, reactivity and stability of the said compound are discussed. To attain these properties, the said molecular structure is optimized using B3LYP/6-311++G(d,p) level of theory at room temperature. The frontier molecular orbitals (FMO...
متن کاملModeling and interactions analysis of the novel antagonist agent flibanserin with 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor as a HSDD treatment in premenopausal women
Flibanserin is a novel antagonist small molecule to treat the hypoactive sexual desire disorder (HSDD) in the premenopausal women. The present article is related to the structural and electronic properties study and docking analysis of the title compound with 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor. To access these aims, the molecular structure of the said compound was optimized usin...
متن کاملDiscovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking
Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...
متن کاملDesign and Synthesis of A Novel Bis-Benzimidazolyl Podand As a Responsive Chemosensors for Anions
A novel podand based anion receptor bearing benzimidazole motifs as recognition sites was designed and synthesized by reaction of 1,7-bis(2'-methylbenzoate)-1,4,7-trioxaheptane and phenylenediamine. The binding properties of anionic guest with this receptor were studied using UV-Vis and fluorescence spectroscopy. These studies revealed that this receptor exhibit selective recognition towar...
متن کاملDiscovery of Novel Glucagon Receptor Antagonists Using Combined Pharmacophore Modeling and Docking
Glucagon and the glucagon receptor are most important molecules control over blood glucose concentrations. These two molecules are very important to studies of type 2 diabetic patients. In literature, several classes of small molecule antagonists of the human glucagon receptor have been reported. Glucagon receptor antagonist could decrease hepatic glucose output and improve glucose control in d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular medicine
دوره 7 7 شماره
صفحات -
تاریخ انتشار 2001